
CAN in Simulation

Copyright 2023 Detlef Mahr

Rev. 1.0

Keyboard
Encoder +

Pushbutton
8 x

Analog
8 Poti +

8 Encoder

Switch
24 x

Keyboard
24 keys

I2C
SPI

USART

USB/CAN
Interface

Graphic
Display

Digital
Output

Overview

1. CAN

Controller Area Network (CAN) is a widely used communication protocol and bus system designed for
robust and reliable data exchange between electronic devices or nodes in various applications, including
automotive, industrial, and aerospace sectors.

CAN was originally developed by Robert Bosch GmbH in the 1980s as a solution to address the increasing
complexity of electrical systems in vehicles. It has since become an industry standard and is defined by the
ISO 11898 standard.

The key features and characteristics of CAN include:

• Message-based communication: CAN uses a message-oriented communication model, where devices
exchange data in the form of messages. Each message contains an identifier, data, and other control
information.

• Broadcast communication: CAN uses a broadcast mechanism, where messages are sent on the bus and
received by all connected devices. Each device filters and processes only the messages relevant to its
own functionality, based on the message identifier.

• Deterministic and prioritized communication: CAN supports prioritization of messages through the use
of message identifiers. Lower priority messages yield to higher priority messages, ensuring time-critical
and important data can be transmitted with minimal delay.

• Error detection and fault tolerance: CAN incorporates a robust error detection and fault tolerance me-
chanism. It uses a cyclic redundancy check (CRC) to verify the integrity of transmitted data and includes
error detection and signaling mechanisms to handle bus errors and recover from faults.

• Differential signaling: CAN uses differential signaling, which helps to ensure noise immunity and relia-
ble data transmission, even in noisy environments.

CAN has gained widespread adoption due to its reliability, simplicity, and efficiency. It is particularly well-
suited for applications that require real-time communication, fault tolerance, and robustness, such as auto-
motive control systems, industrial automation, and aerospace avionics.

2. CANaerospace

CANaerospace is a cooperative initiative among avionics manufacturers, operators, and integrators aimed
at defining a standardized data bus for avionics systems. It is an open architecture and protocol that allows for
seamless communication between avionics devices within an aircraft.

The CANaerospace protocol is based on the Controller Area Network (CAN) bus technology, which is
known for its reliability and fault-tolerant capabilities. It provides a structured framework for transmitting and
receiving data between avionics systems, such as flight control, navigation, communication, and monitoring
systems.

The main goal of CANaerospace is to enable interoperability and compatibility among different avionics
components from various manufacturers. By defining a common protocol and message format, CANaerospa-
ce facilitates the integration and exchange of data between avionics systems, regardless of their origin.

This standardized approach offers several benefits, including reduced development time, improved system
reliability, simplified maintenance, and increased flexibility in avionics upgrades and modifications. It also
helps to minimize wiring complexity and weight, which are crucial considerations in the aerospace industry.

CANaerospace has been widely adopted in both commercial and military aircraft, as well as in other aero-
space applications. It continues to evolve and adapt to meet the changing needs and advancements in avionics
technology, ensuring efficient and reliable communication between avionics systems in modern aircraft.

3. CAN in Simulation

CAN in Simulation (CiS) is a technology that allows the integration of a Controller Area Network (CAN)
bus system with a Flight Simulator running on a PC. This integration is achieved using a hardware component
called the CAN-USB Interface, which connects the CAN bus to the PC via a USB port. The CAN-USB Inter-
face is a Human Interface Device (HID) and does not require additional drivers. It converts CAN messages
into a 15-byte report format and vice versa.

Flight simulators that support the SimConnect API, such as Microsoft Flight Simulator, Prepar3D, and Flight
Simulator X, can benefit from AxisAndOhs software, which is highly versatile and can directly interpret CiS
messages. For X-Plane users, FlyWithLua software may be preferred for this purpose.

Apart from the CAN-USB interface, several basic CAN bus devices are available for connecting input and
output components. Electronic Control Units (ECUs) or CAN nodes can be used to connect potentiometers,
encoders, and switches as input components. On the output side, there are devices that enable connection to
alphanumeric or graphical displays, indicators, or actuators.

These CAN bus devices offer a flexible and modular approach for integrating a wide range of components
with the Flight Simulator. By using these devices, custom solutions tailored to specific needs and requirements
can be created. Whether operating a complete flight deck, navigation equipment, or displaying information,
there are CAN bus devices available to meet your needs. Alternatively, custom CAN bus devices can be built,
greatly enhancing the realism and functionality of a Flight Simulator setup.

According to the CANaerospace specification, CAN in Simulation uses CAN identifiers in the „Low Prio-
rity User Defined Data“ range of 0x708 - 0x76B (1800 -1899). There are 6 distinct groups predefined, each
comprising eight unique identifiers:

hexadecimal decimal

0x708 - 0x70F 1800 - 1807 Encoder Data
0x710 - 0x717 1808 - 1815 Switch Data
0x718 - 0x71F 1816 - 1823 Analog Data
0x720 - 0x727 1824 - 1831 Keyboard Data
0x728 - 0x72F 1832 - 1839 Digital Output Data
0x730 - 0x73F 1840 - 1847 User Defined Data

The meaning of the 8 data bytes in the corresponding CAN message is explained in the subsequent de-
scriptions.

From the Low Priority Node Service Data (NSL) Can In Simulation implements the following services:

• Identification Service (IDS)
• Node Synchronisation Service (NSS)
• State Transmission service (STS)
• Baud Setting Service (BSS)
• Node-ID Setting Service (NIS)
• Module Information Service (MIS)
• Module Configuration Service (MCS)
• CAN Identifier Setting Service (CSS)

Can In Simulation follows the CANaerospace general message format with a data field like this:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Byte 0: node-ID
Byte 1: data type
Byte 2: service code
Byte 3: message code
Byte 4 - 7: 4 data bytes

node-ID The node-ID serves as the identifier for the module either transmitting data in Normal Ope-
ration Data (NOD) or the intended recipient module in Node Service Data (NSH/NSL).

Node-IDs span from 0 to 255, where <0> carries a unique status as a special broadcast ad-
dress, directing communication to „all nodes.“

data type This indicates the coding of the message data, with a comprehensive list of available data
types provided in Appendix C.

service code In the context of Normal Operating Data (NOD), this byte offers a means to delineate vari-
ous data interpretations. It should be set to zero when not in use.

In the case of Node Service Data (NSH/NSL), this represents the pre-defined service code
for the ongoing operation.

message code In the context of Normal Operating Data (NOD), this byte is sequentially incremented with
each message, signifying consecutive messages. When it reaches <255>, it wraps around to
<0>.

Within Node Service Data (NSH/NSL), this byte serves as a means to extend the service‘s
specifications.

data This represents the actual data. The number of significant bytes is determined by the code in
the data type field.

3.1 Low Priority User Defined Data (UDL)
CAN in Simulation uses the UDL range of CANaerospace identifiers (0708h ... 076Bh). Messages are uni-

quely identified by their CAN-ID, and the message data are specified through the message header.

3.1.1 Encoder Data (CAN-ID 708h to 70Fh)

Encoder modules transmit a message upon detecting any encoder event, whether it be a clockwise or anti-
clockwise turn, or the pressing or releasing of a pushbutton. These events are bit-oriented and efficiently
packed into 1 byte.

CAN - ID Message Header Message Data

708h node 11 item num data 0 0 0
|

70Fh node 11 item num data 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: BCHAR (11)

service code: encoder number (item = 1 ... 255)

message code: incremental message count (num++)

message data: Byte 4: Bit 7: fast rotation
Bit 3: event PUSHBUTTON OFF
Bit 2: event PUSHBUTTON ON
Bit 1: event COUNTERCLOCKWISE
Bit 0: event CLOCKWISE

3.1.2 Switch Data (CAN-ID 710h to 717h)
Switch modules produce a message whenever there is a change in the state of any connected switches. The

data is organized in a bit-oriented manner and compactly packed into a single byte.

CAN - ID Message Header Message Data

710h node 11 item num data 0 0 0
|

717h node 11 item num data 0 0 0

node-ID: node ID (1 ... 255)

data type: BCHAR (11)

service code: switch number (item = 1 ... 255)

message code: incremental message count (num++)

message data: Byte 4: Bit 1: event ON
Bit 0: event OFF

3.1.3 Analog Data
Analog modules generate a 16-bit output, and this data is packed into 2 bytes, with the most significant

byte presented first.

CAN - ID Message Header Message Data

718h node 7 item num a1 a2 0 0
|

71Fh node 7 item num a1 a2 0 0

node-ID: node ID (1 .. 255)

data type: USHORT (7)

service code: axis number (item = 1 ... 255)

message code: incremental message count (num++)

message data: Byte 4: analog value (a1 = high byte)
Byte 5: analog value (a2 = low byte)

3.1.4 Keyboard Data
Keyboard modules transmit a message each time an associated key is either pressed or released. The key

message comprises a modifier byte and a key-code byte, both defined in the USB HID usage tables publis-
hed by the USB Implementers Forum (Appendix A).

CAN - ID Message Header Message Data

720h node 19 0 num mod key 0 0
|

727h node 19 0 num mod key 0 0

node-ID: node ID (node = 1 ... 255)

data type: UCHAR2 (19)

service code: -

message code: incremental message count (num++)

message data: Byte 4: Modifier (mod)
Byte 5: Keycode (key) (see Appendix A)

Modifier byte:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

left
Ctrl

left
Shift

left
Alt

left
GUI

right
Ctrl

right
hift

right
Alt

right
GUI

3.1.5 Digital Output Data
Digital output modules function as receiving units, accepting messages to either set or clear a designated

output port.

CAN - ID Message Header Message Data

728h node 11 item num data 0 0 0
|

72Fh node 11 item num data 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: BCHAR (11)

service code: output channel (item = 1 ... 255)

message code: incremental message count (num++)

message data: Byte 4: Bit 1: set OFF
Bit 0: set ON

3.1.6 User-defined Data
User-defined data data refer to information not explicitly specified. All 8 message bytes (header and data)

can be utilized for transmitting arbitrary data, although adhering to the CANaerospace scheme is strongly
recommended.

When utilizing the AxisAndOhs API, this interface processes messages falling within the specified CAN-
ID range and generates (or updates) a local variable. This variable can then be utilized in scripts as needed.

CAN - ID Message Header Message Data

730h u1 u2 u3 u4 u5 u6 u7 u8

|
73Fh u1 u2 u3 u4 u5 u6 u7 u8

node-ID: user specified AAO: unused

data type: user specified AAO: data type, part of L:var name

service code: user specified AAO: part of L:var name

message code: user specified AAO: part of L:var name

message data: user specified AAO: L:var value based on data type

3.2 Node Service Data (NSH)

3.2.1 Identification Service (IDS)
The Identification Service operates as a client/server-type service, serving the purpose of acquiring a „sign-

of-life“ indication from the specified node.

If the node-ID is configured as 0 (the broadcast address), it enables the detection of all nodes connected to
the network.

Identification Service

CAN - ID Message Header Message Data

7D0h node 0 0 num 0 0 0 0

node-ID: node ID (node = 0 ... 255)

data type: NODATA (0)

service code: IDS (0)

message code: incremental message count (num++)

message data: unused

Response

CAN - ID Message Header Message Data

7D1h node 16 0 <> xx yy 0 0

node-ID: node ID (node = 1 ... 255)

data type: UCHAR4 (16)

service code: IDS (0)

message code: <as in request>

message data: Byte 4: Hardware Revision (xx)
Byte 5: Software Revision (yy)
Byte 6: Identifier Distribution (0 = default)
Byte 7: Header Type (0 = CANaerospace)

3.2.2 Node Synchronisation Service (NSS)
This service is employed to synchronize the time across all nodes connected to the network. For this purpo-

se, the node-ID is configured as 0. The timestamp can be used to provide a 32-bit value for adjusting clock
settings.

Node Synchronisation Service

CAN - ID Message Header Message Data

080h 0 4 1 0 time3 time2 time1 time0

node-ID: node ID (node = 0, broadcast)

data type: ULONG (4)

service code: NSS (1)

message code: unused (0)

message data: Byte 4 - 7: 32-bit timestamp (time3 = MSB)

There is no response.

3.2.3 State Transmission Service (STS)
This service is used by other nodes in the network which need to to obtain current data that is normally

transmitted upon state change only.

State Transmission Service

CAN - ID Message Header Message Data

7D0h node 0 7 0 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: NODATA (0)

service code: STS (7)

message code: 0

message data: unused

Response

CAN - ID Message Header Message Data

7D1h node <> 0 0 <> <> <> <>

node-ID: node ID (node = 1 ... 255)

data type: CiS: data specific

service code: STS (7)

message code: CiS:

message data: CiS: module states

Can in Simulation modules, such as the switch module or digital output modules, can be queried using the
State Transmission Service to gather information about current switch settings or output states. The returned
data are bit-oriented and compactly packed into 3 bytes, accommodating 24 switches and 24 output ports.

3.2.4 Baudrate Setting Service (BSS)
The Baudrate Setting Service alters the CAN baudrate of the addressed node. Since the baudrate change

takes effect immediately, there is no response in the event of success. If the change fails, the node retains its
original baudrate and issues an error.

Baudrate Setting Service

CAN - ID Message Header Message Data

7D0h node 6 10 0 b1 b2 0 0

node-ID: node ID (node = 0 ... 255)

data type: SHORT (6)

service code: BSS (10)

message code: 0

message data: Byte 4: b1 = baudrate code (high byte)
Byte 5: b2 = baudrate code (low byte)

(Response)

CAN - ID Message Header Message Data

7D1h node 0 10 -1 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: NODATA (0)

service code: BSS (10)

message code: -1 = baudrate code unknown

message data: n. a.

The baudrate code may have the following values:

0 1 MBit/s
1 500 kBit/s
2 250 kBit/s
3 125 kBit/s

3.2.5 Node-ID Setting Service (NIS)
The Node-ID Setting Service is employed to configure the ID of the addressed node, and the new ID takes

effect immediately. Upon successful execution, the response includes the updated node ID.

Identification Service

CAN - ID Message Header Message Data

7D0h node 0 11 id 0 0 0 0

node-ID: node ID (node = 0 ... 255)

data type: NODATA (0)

service code: NIS (11)

message code: <new node-ID> (1 ≤ id ≤ 255)

message data: unused

Response

CAN - ID Message Header Message Data

7D1h node 0 11 0 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: NODATA (0)

service code: NIS (11)

message code: 0 = ok

message data: unused

3.2.6 Module Information Service (MIS)
The Module Information Service is a feature designed to provide details about modules installed in the

addressed node. Consequently, users have the flexibility to define the format of this service. CAN in Simula-
tion utilizes this service to fetch parameter values from the designated node.

Module Information Service

CAN - ID Message Header Message Data

7D0h node 0 12 c 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: CiS: NODATA (0)

service code: MIS (12)

message code: CiS: c = code of parameter to be queried

message data: unused

Response

CAN - ID Message Header Message Data

7D1h node <> 12 <> p1 p2 p3 p4

node-ID: node ID (node = 1 ... 255)

data type: CiS: parameter specific

service code: MIS (12)

message code: <as request> or -6 if parameter code unknown

message data: CiS: requested parameter

Currently implemented parameter codes include:

0 CAN-ID
1 offset
2 threshold
3 slow step
4 fast step
5 keystroke
6 open drain
7 switch state

3.2.7 Module Configuration Service (MCS)
The module configuration service is designed to configure the modules installed within the specified node.

As a result, the format of this service is primarily user-defined. CAN in Simulation utilizes this service to
establish specific parameters employed by individual nodes.

Module Configuration Service

CAN - ID Message Header Message Data

7D0h node <> 13 c p1 p2 p3 p4

node-ID: node ID (node = 1 ... 255)

data type: CiS: parameter specific

service code: MCS (13)

message code: CiS: c = parameter code

message data: CiS: parameter value(s)

Response

CAN - ID Message Header Message Data

7D1h node 0 13 0 <> <> <> <>

node-ID: node ID (node = 1 ... 255)

data type: NODATA (0)

service code: MCS (13)

message code: 0 = ok or -6 if parameter unknown or out of range

message data: <as in request>

3.2.8 CAN Identifier Setting Service (CSS)
The CAN identifier setting service is used to configure the CAN identifier for a designated CAN message

transmitted by the targeted node. This is achieved by defining the message using a distinct „message num-
ber“ along with the desired CAN identifier. The permissible range for both the message number and the
CAN identifier is user-defined.

CAN ID Setting Service

CAN - ID Message Header Message Data

7D0h node 12 14 0 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: SHORT2 (12)

service code: CSS (14)

message code:

message data: Byte 4: message number high byte
Byte 5: message number low byte
Byte 6: CAN identifier high byte
Byte 7: CAN identifier low byte

Response

CAN - ID Message Header Message Data

7D1h node 0 14 <> 0 0 0 0

node-ID: node ID (node = 1 ... 255)

data type: NODATA (0)

service code: CSS (14)

message code: 0 = OK, -6 = message number or CAN-ID out of range

message data: n. a.

Appendix A
Keycodes used by the keyboard module

hex dec Usage Name
00 0 Reserved
01 1 Keyboard Error Roll Over
02 2 Keyboard POST Fail
03 3 Keyboard Error Undefined
04 4 Keyboard a and A
05 5 Keyboard b and B
06 6 Keyboard c and C
07 7 Keyboard d and D
08 8 Keyboard e and E
09 9 Keyboard f and F
0A 10 Keyboard g and G
0B 11 Keyboard h and H
0C 12 Keyboard i and I
0D 13 Keyboard j and J
0E 14 Keyboard k and K
0F 15 Keyboard l and L
10 16 Keyboard m and M
11 17 Keyboard n and N
12 18 Keyboard o and O
13 19 Keyboard p and P
14 20 Keyboard q and Q
15 21 Keyboard r and R
16 22 Keyboard s and S
17 23 Keyboard t and T
18 24 Keyboard u and U
19 25 Keyboard v and V
1A 26 Keyboard w and W
1B 27 Keyboard x and X
1C 28 Keyboard y and Y
1D 29 Keyboard z and Z
1E 30 Keyboard 1 and !
1F 31 Keyboard 2 and @

hex dec Usage Name
20 32 Keyboard 3 and #
21 33 Keyboard 4 and $
22 34 Keyboard 5 and %
23 35 Keyboard 6 and ^
24 36 Keyboard 7 and &
25 37 Keyboard 8 and *
26 38 Keyboard 9 and (
27 39 Keyboard 0 and)
28 40 Keyboard Return (ENTER)
29 41 Keyboard ESCAPE
2A 42 Keyboard DELETE (Backspace)
2B 43 Keyboard Tab
2C 44 Keyboard Spacebar
2D 45 Keyboard - and (underscore)
2E 46 Keyboard = and +
2F 47 Keyboard [and {
30 48 Keyboard] and }
31 49 Keyboard \and|
32 50 Keyboard Non-US # and ˜
33 51 Keyboard ; and :
34 52 Keyboard ‘ and “
35 53 Keyboard ^ and ˜
36 54 Keyboard , and <
37 55 Keyboard . and >
38 56 Keyboard / and ?
39 57 Keyboard CapsLock
3A 58 Keyboard F1
3B 59 Keyboard F2
3C 60 Keyboard F3
3D 61 Keyboard F4
3E 62 Keyboard F5
3F 63 Keyboard F6

hex dec Usage Name
40 64 Keyboard F7
41 65 Keyboard F8
42 66 Keyboard F9
43 67 Keyboard F10
44 68 Keyboard F11
45 69 Keyboard F12
46 70 Keyboard PrintScreen
47 71 Keyboard ScrollLock
48 72 Keyboard Pause
49 73 Keyboard Insert
4A 74 Keyboard Home
4B 75 Keyboard PageUp
4C 76 Keyboard Delete Forward
4D 77 Keyboard End
4E 78 Keyboard PageDown
4F 79 Keyboard RightArrow
50 80 Keyboard LeftArrow
51 81 Keyboard DownArrow
52 82 Keyboard UpArrow
53 83 Keypad NumLock and Clear
54 84 Keypad /
55 85 Keypad *
56 86 Keypad -
57 87 Keypad +
58 88 Keypad ENTER
59 89 Keypad 1 and End
5A 90 Keypad 2 and DownArrow
5B 91 Keypad 3 and PageDn
5C 92 Keypad 4 and LeftArrow
5D 93 Keypad 5
5E 94 Keypad 6 and RightArrow
5F 95 Keypad 7 and Home

hex dec Usage Name
60 96 Keypad 8 and UpArrow
61 97 Keypad 9 and PageUp
62 98 Keypad 0 and Insert
63 99 Keypad . and Delete
64 100 Keyboard Non-US \ and |
65 101 Keyboard Application
66 102 Keyboard Power
67 103 Keypad =
68 104 Keyboard F13
69 105 Keyboard F14
6A 106 Keyboard F15
6B 107 Keyboard F16
6C 108 Keyboard F17
6D 109 Keyboard F18
6E 110 Keyboard F19
6F 111 Keyboard F20
70 112 Keyboard F21
71 113 Keyboard F22
72 114 Keyboard F23
73 115 Keyboard F24
74 116 Keyboard Execute
75 117 Keyboard Help
76 118 Keyboard Menu
77 119 Keyboard Select

78 120 Keyboard Stop
79 121 Keyboard Again
7A 122 Keyboard Undo
7B 123 Keyboard Cut
7C 124 Keyboard Copy
7D 125 Keyboard Paste
7E 126 Keyboard Find
7F 127 Keyboard Mute

Keycodes used by the keyboard module (continued)

hex dec Usage Name
80 128 Keyboard VolumeUp
81 129 Keyboard VolumeDown
82 130 Keyboard Locking CapsLock
83 131 Keyboard Locking NumLock
84 132 Keyboard Locking ScrollLock
85 133 Keypad Comma
86 134 Keypad EqualSign
87 135 Keyboard International 1
88 136 Keyboard International 2
89 137 Keyboard International 3
8A 138 Keyboard International 4
8B 139 Keyboard International 5
8C 140 Keyboard International 6
8D 141 Keyboard International 7
8E 142 Keyboard International 8
8F 143 Keyboard International 9
90 144 Keyboard LANG 1
91 145 Keyboard LANG 2
92 146 Keyboard LANG 3
93 147 Keyboard LANG 4
94 148 Keyboard LANG 5
95 149 Keyboard LANG 6
96 150 Keyboard LANG 7
97 151 Keyboard LANG 8
98 152 Keyboard LANG 9
99 153 Keyboard Alternate Erase
9A 154 Keyboard SysReq/Attention
9B 155 Keyboard Cancel
9C 156 Keyboard Clear
9D 157 Keyboard Prior
9E 158 Keyboard Return
9F 159 Keyboard Separator

hex dec Usage Name
A0 160 Keyboard Out
A1 161 Keyboard Oper
A2 162 Keyboard Clear/Again
A3 163 Keyboard CrSel/Props
A4 164 Keyboard ExSel
A5 165 Reserved
A6 166 Reserved
A7 167 Reserved
A8 168 Reserved
A9 169 Reserved
AA 170 Reserved
AB 171 Reserved
AC 172 Reserved
AD 173 Reserved
AE 174 Reserved
AF 175 Reserved
B0 176 Keypad 00
B1 177 Keypad 000
B2 178 Thousands Separator
B3 179 Decimal Separator
B4 180 Currency Unit
B5 181 Currency Sub-unit
B6 182 Keypad (
B7 183 Keypad)
B8 184 Keypad {
B9 185 Keypad }
BA 186 Keypad Tab
BB 187 Keypad Backspace
BC 188 Keypad A
BD 189 Keypad B
BE 190 Keypad C
BF 191 Keypad D

Keycodes used by the keyboard module (continued)

hex dec Usage Name
C0 192 Keypad E
C1 193 Keypad F
C2 194 Keypad XOR
C3 195 Keypad ^
C4 196 Keypad %
C5 197 Keypad <
C6 198 Keypad >
C7 199 Keypad &
C8 200 Keypad &&
C9 201 Keypad |
CA 202 Keypad ||
CB 203 Keypad :
CC 204 Keypad #
CD 205 Keypad Space
CE 206 Keypad @
CF 207 Keypad !
D0 208 Keypad Memory Store
D1 209 Keypad Memory Recall
D2 210 Keypad Memory Clear
D3 211 Keypad Memory Add
D4 212 Keypad Memory Subtract
D5 213 Keypad Memory Multiply
D6 214 Keypad Memory Divide
D7 215 Keypad +/-
D8 216 Keypad Clear
D9 217 Keypad ClearEntry
DA 218 Keypad Binary
DB 219 Keypad Octal
DC 220 Keypad Decimal
DD 221 Keypad Hexadecimal
DE 222 Reserved
DF 223 Reserved

hex dec Usage Name
E0 224 Keyboard Left Control
E1 225 Keyboard Left Shift
E2 226 Keyboard Left Alt
E3 227 Keyboard Left GUI
E4 228 Keyboard Right Control
E5 229 Keyboard Right Shift
E6 230 Keyboard Right Alt
E7 231 Keyboard Right GUI
E8 232 Reserved
...
FF 255 Reserved

Keycodes used by the keyboard module (continued)

Appendix B

1. USB Interface Input Report

Byte 0 Report ID <1>

Byte 1 CAN ID (high byte)
Byte 2 CAN ID (low byte)
Byte 3 Node ID (CAN module identifier)
Byte 4 Data Type (as per CANaerospace specification)
Byte 5 Service Code (i. e. item address within module)
Byte 6 Message Count (incremented by one for each message)
Byte 7 Message Data Byte 0 (module dependent)
Byte 8 Message Data Byte 1 (module dependent)
Byte 9 Message Data Byte 2 (module dependent)
Byte 10 Message Data Byte 4 (module dependent)
Byte 11 Time Stamp [μs] (most significant byte)
Byte 12 Time Stamp [μs]
Byte 13 Time Stamp [μs]
Byte 14 Time Stamp [μs] (least significant byte)

2. USB Interface Output Report

Byte 0 Report ID <1>
Byte 1 CAN ID (high byte)
Byte 2 CAN ID (low byte)
Byte 3 Node ID (CAN module identifier)
Byte 4 Data Type (as per CANaerospace specification)
Byte 5 Service Code (i. e. item address within module)
Byte 6 Message Count (incremented by one for each message)
Byte 7 Message Data Byte 0 (module dependent)
Byte 8 Message Data Byte 1 (module dependent)
Byte 9 Message Data Byte 2 (module dependent)
Byte 10 Message Data Byte 4 (module dependent)
Byte 11 <0>
Byte 12 <0>
Byte 13 <0>
Byte 14 <0>

Appendix C

Data Types (according to CANaerospace)

Data Type Range Bits Explanation Type #

NODATA n.a. 0 “No data” type 0 (00h)

ERROR n.a. 32 Emergency event data type 1 (01h)

FLOAT 1-bit sign 23-bit fraction
8-bit exponent 32 Single precision floating-point value

according to IEEE-754-1985 2 (02h)

LONG -2147483647 to +2147483648 32 2’s complement integer 3 (03h)

ULONG 0 to 4294967295 32 unsigned integer 4 (04h)

BLONG n.a. 32 Each bit defines a discrete state.
32 bits are coded into four CAN data bytes 5 (05h)

SHORT -32768 to +32767 16 2’s complement short integer 6 (06h)

USHORT 0 to 65535 16 unsigned short integer 7 (07h)

BSHORT n.a. 16 Each bit defines a discrete state.
16 bits are coded into two CAN data bytes 8 (08h)

CHAR -128 to +127 8 2‘s complement char integer 9 (09h)

UCHAR 0 to 255 8 unsigned char integer 10 (0Ah)

BCHAR n.a. 8 Each bit defines a discrete state.
8 bits are coded into a single CAN data byte 11 (0Bh)

SHORT2 -32768 to +32767 2x16 2 x 2‘s complement short integer 12 (0Ch)

USHORT2 0 to 65535 2x16 2 x unsigned short integer 13 (0Dh)

BSHORT2 n.a. 2x16 2 x discrete short 14 (0Eh)

CHAR4 -128 to +127 4x8 4 x 2‘s complement char integer 15 (0Fh)

UCHAR4 0 to 255 4x8 4 x unsigned char integer 16 (10h)

BCHAR4 n.a 4x8 4 x discrete char 17 (11h)

CHAR2 -128 to +127 2x8 2 x 2‘s complement char integer 18 (12h)

UCHAR2 0 to 255 2x8 2 x unsigned char integer 19 (13h)

BCHAR2 n.a. 2x8 2 x discrete char 20 (14h)
MEMID 0 to 4294967295 32 Memory ID for upload/download 21 (15h)

CHKSUM 0 to 4294967295 32 Checksum for upload/download 22 (16h)

ACHAR 0 to 255 8 ASCII character 23 (17h)

ACHAR2 0 to 255 2x8 2 x ASCII character 24 (18h)

ACHAR4 0 to 255 4x8 4 x ASCII character 25 (19h)

CHAR3 -128 to +127 3x8 3 x 2‘s complement char integer 26 (1Ah)

UCHAR3 0 to 255 3x8 3 x unsigned char integer 27(1Bh)

BCHAR3 n.a. 3x8 3 x discrete char 28 (1Ch)

ACHAR3 0 to 255 3x8 3 x ASCII character 29 (1Dh)

Data Type Range Bits Explanation Type #

DOUBLEH 1-bit sign 52-bit fraction
11-bit exponent 32 32 msb of double precision floating-point

value according to IEEE-754-1985 30 (1Eh)

DOUBLEL 1-bit sign 52-bit fraction
11-bit exponent 32 32 lsb of double precision floating-point

value according to IEEE-754-1985 31 (1Fh)

RESVD n.a. - Reserved for future use 32 - 99

UDEF n.a. - User defined data types 100 - 255

